Standards & Specifications Update: Dimming & Flicker

Lightfair

April 2013

Michael Poplawski

Pacific Northwest National Laboratory michael.poplawski@pnnl.gov

Dimming update

- NEMA SSL-7A contains design criteria and compliance test and measurement procedures for LED light engines and forward phase-cut dimmers
 - Published 4/22/2013
- EPA ENERGYSTAR is working on dimming criteria for Lamps
 - Draft 4 Version 1.0, published 4/19/2013
- California Code of Regulations, Title 20, Public Utilities and Energy does not contain any dimming criteria
 - CEC-140-2012-002, published November 2012
- Voluntary California Quality Light-Emitting Diode (LED)
 Lamp Specification contains some dimming criteria
 - CEC-400-2012-016-SF, published December 2012

Flicker update

- IES Testing Procedures Committee Working Group S408-10 is poised to form a committee in May to work on a test method for optical waveforms
- EPA ENERGYSTAR is working on flicker criteria for Lamps
 - Draft 4 Version 1.0, published 4/19/2013
- California Code of Regulations, Title 20, Public Utilities and Energy does not contain any flicker criteria
 - CEC-140-2012-002, published November 2012
- Voluntary California Quality Light-Emitting Diode (LED)
 Lamp Specification contains some flicker criteria
 - CEC-400-2012-016-SF, published in December 2012

Inception of NEMA SSL-7

- Market demand by lamp and control manufacturers and sales channels
- Demand from industry forces

Work by other standards bodies

Frustrating user experiences

Inception of NEMA SSL-7

- Release of NEMA SSL-6 in 2010
 - Described installed base of phase-cut dimmers
 - Latent realization that variation in installed base was difficult to design for
- Formation of NEMA SSL-7 committee in late 2011
 - NEMA Lighting Section members
 - European manufacturers, IC manufactures (invited through Zhaga)
 - UL, DOE
- Adoption of a forward-looking strategy to bound the problem
 - Don't address existing products
 - Do provide design criteria for new products
 - Do target global scope (100, 120, 230, 277V operation)

NEMA SSL-7 Goals

 An interface standard that addresses the interaction between dimmers and LED light engines

- Design criteria for both dimmers and LED light engines
- Test & measurement procedures for verifying that both dimmers and LED light engines meet the specified design criteria
- Acceptance wholly or in part by standards bodies (Zhaga, UL, IEC, etc.) and adoption agents (EPA ENERGYSTAR, California Energy Commission, etc.)

NEMA SSL-7 Approach

• The problem is very complicated! A decision was made to focus on a single type of phase control, and separate issues and technical challenges into two areas.

- NEMA SSL-7A will address Compatibility for forward phase-cut dimmers and LED light engines; a potential future extension or new document may address Performance
- Compatibility (or Interoperability)
 - Dimming behavior meets or exceeds specified functionality
 - Reliability of the dimmer and light source are not affected by combining them

Phase-cut dimming issues

Poor User Experiences

- □Dimming range
- ■Dead travel
- □Pop-on
- □Drop-out
- **□**Popcorn
- **□**Ghosting
- □Flashing/Strobing
- ■Induced Flicker
- ☐ Audible noise

- □Dimming smoothness
- □ Dimming monotonicity
- □Dimming up/down symmetry
- □Dimmer loading
- □Dimmer LED light engine inoperability
- ☐ Premature failure of dimmer and/or LED light engine

Source: Modified from NEMA SSL-6

Dimming smoothness, monotonicity, up/down symmetry

Source: Modified from NEMA SSL-6

Phase-cut dimming issues

Technical challenges

- □LED load RMS current
- □LED load inrush current
- □LED load repetitive peak current
- □ Repetitive ring-up voltage
- □ Dimmer switching element current requirements
- □Dimmer timing element series impedance requirements
- □ Dimmer on-state and/or off-state operating current requirements

What does NEMA SSL-7A achieve?

Poor User Experiences

- ✓ Dimming range
- ✓ Dead travel
- ✓ Pop-on
- ✓ Drop-out
- Popcorn
- ✓ Ghosting
- Flashing/Strobing
- X Induced Flicker
- **X** Audible noise

- **✗** Dimming smoothness
- **✗** Dimming monotonicity
- Dimming up/down symmetry
- ✓ Dimmer loading
- Dimmer LED light engine inoperability
- ✓ Premature failure of dimmer and/or LED light engine

What does NEMA SSL-7A achieve?

Technical Challenges

- ✓ LED load RMS current
- ✓ LED load inrush current
- ✓ LED load repetitive peak current
- ✓ Repetitive ring-up voltage
- Dimmer switching element current requirements
- ✓ Dimmer timing element series impedance requirements
- ✓ Dimmer on-state and/or off-state operating current requirements

What comes next?

- Publication
- Commercial adoption
 - SSL-7A compliant products
 - Product labeling guidelines
 - End-user education
- Adoption by standards bodies
- Influence of specification agents
 - Zhaga
 - EPA ENERGYSTAR
 - California EnergyCommission

Flicker issues

- All traditional light sources flicker, but unprecedented flicker characteristics can be found in commercially available LED sources
- Significant potential human health impacts, including various neurological problems (including epileptic seizure), headaches, fatigue, blurred vision, eyestrain, reduced visual task performance, stroboscopic and phantom array effects, and distraction
- Not all flicker claims are equal
 - Metrics exist, but are not widely used, and do not account for frequency.
 - No standard measurement procedure
- Potential impacts of flicker have population and lighting application dependencies – requiring risk analysis

Closing comments

NEMA SSL-7A

- Poised to significantly improve user experiences, but only for combinations of compliant LED light engines and forward phasecut dimmers
- Manufacture adoption should be high, and compliant products available soon. Achievement of goals, impact of limitations, required refinements to achieve robustness TBD

EPA ENERGYSTAR

- Not currently considering requiring SSL-7A compliance
- Flicker requirements could significantly improve commercial lamp evaluation for flicker, but (currently) only apply to dimmable lamps
- California Energy Commission
 - Title 20 likely to have flicker requirements in the future
- CIE TC 1-83 may begin working on Visual Aspects of Time-Modulated Lighting Systems

DOE SSL Program efforts

- Dimming evaluation of SSL-7A compliant LED light engines and dimming controls
 - Focused on verifying compatibility/interoperability goals
 - TBD, depending on when compliant products become available
- Flicker fact sheet
 - Published March 2013
 - http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/flicker_ fact-sheet.pdf
- Recommendations for Flicker Criteria
 - Multiple options, presented in context of existing research and commercial product performance
 - Focused on capabilities, limitations, and trade-offs
 - Coming soon

Flicker criteria proposal(s)

Potential criteria presented and discussed at CIE Centenary Conference, Paris, April 2013

